Search results
Results from the WOW.Com Content Network
Italian physicist and electrical engineer Galileo Ferraris publishes a paper on the induction motor, and Serbian-American engineer Nikola Tesla gets a US patent on the same device [4] [5] 1890: Thomas Alva Edison invents the fuse: 1893: During the Fourth International Conference of Electricians in Chicago, electrical units were defined 1893
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.
As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Ohm did his work on resistance in the years 1825 and 1826, and published his results in 1827 as the book Die galvanische Kette, mathematisch bearbeitet ("The galvanic circuit investigated mathematically"). [10] He drew considerable inspiration from Joseph Fourier's work on heat conduction in the theoretical explanation of his work.
The Spitzer resistivity (or plasma resistivity), also called 'Spitzer-Harm resistivity', is an expression describing the electrical resistance in a plasma, which was first formulated by Lyman Spitzer in 1950. [1] [2] The Spitzer resistivity of a plasma decreases in proportion to the electron temperature as /.
Contact resistance values are typically small (in the microohm to milliohm range). Contact resistance can cause significant voltage drops and heating in circuits with high current. Because contact resistance adds to the intrinsic resistance of the conductors, it can cause significant measurement errors when exact resistance values are needed.
The following formulae use it, assuming a constant voltage applied across the capacitor and resistor in series, to determine the voltage across the capacitor against time: Charging toward applied voltage (initially zero voltage across capacitor, constant V 0 across resistor and capacitor together) V 0 : V ( t ) = V 0 ( 1 − e − t / τ ...