Search results
Results from the WOW.Com Content Network
Reaction (physics) As described by the third of Newton's laws of motion of classical mechanics, all forces occur in pairs such that if one object exerts a force on another object, then the second object exerts an equal and opposite reaction force on the first. [1][2] The third law is also more generally stated as: "To every action there is ...
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body (ies).
Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by ...
Virtual work is the total work done by the applied forces and the inertial forces of a mechanical system as it moves through a set of virtual displacements. When considering forces applied to a body in static equilibrium, the principle of least action requires the virtual work of these forces to be zero.
In classical mechanics, a reactive centrifugal force forms part of an action–reaction pair with a centripetal force. In accordance with Newton's first law of motion, an object moves in a straight line in the absence of a net force acting on the object. A curved path ensues when a force that is orthogonal to the object's motion acts on it ...
t. e. A moment is a mathematical expression involving the product of a distance and a physical quantity such as a force or electric charge. Moments are usually defined with respect to a fixed reference point and refer to physical quantities located some distance from the reference point. For example, the moment of force, often called torque, is ...
Screw theory is the algebraic calculation of pairs of vectors, also known as dual vectors[1] – such as angular and linear velocity, or forces and moments – that arise in the kinematics and dynamics of rigid bodies. [2][3] Screw theory provides a mathematical formulation for the geometry of lines which is central to rigid body dynamics ...
The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that in the equivalent static system one can take moments about any point (not just the center of mass).