Search results
Results from the WOW.Com Content Network
Mean-field theory. In physics and probability theory, Mean-field theory (MFT) or Self-consistent field theory studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom (the number of values in the final calculation of a statistic that are ...
The Ising model (or Lenz–Ising model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1). The spins are arranged in a graph ...
Analytical results can be theoretically achieved in mean field theory in high dimensions or when exact solutions are known such as the two-dimensional Ising model. The theoretical treatment in generic dimensions requires the renormalization group approach or, for systems at thermal equilibrium, the conformal bootstrap techniques.
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.
In d=2, the two-dimensional critical Ising model's critical exponents can be computed exactly using the minimal model,. In d=4, it is the free massless scalar theory (also referred to as mean field theory). These two theories are exactly solved, and the exact solutions give values reported in the table.
In chemistry and physics, the exchange interaction is a quantum mechanical constraint on the states of indistinguishable particles. While sometimes called an exchange force, or, in the case of fermions, Pauli repulsion, its consequences cannot always be predicted based on classical ideas of force. [1] Both bosons and fermions can experience the ...
The Ising model can be solved analytically in one and two dimensions, numerically in higher dimensions, or using the mean-field approximation in any dimensionality. Additionally, the ferromagnet to paramagnet phase transition is a second-order phase transition and so can be modeled using the Landau theory of phase transitions.
The DMFT treatment of lattice quantum models is similar to the mean-field theory (MFT) treatment of classical models such as the Ising model. [6] In the Ising model, the lattice problem is mapped onto an effective single site problem, whose magnetization is to reproduce the lattice magnetization through an effective "mean-field".