Search results
Results from the WOW.Com Content Network
For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.
In 2013 DOE presented a proposal for an "exascale" supercomputer, capable of speeds in the neighborhood of 1 exaFLOP (10 18 floating point mathematical operations per second) with a maximum power consumption of 20 megawatts (MW) by 2020. [5] Aurora was first announced in 2015 and to be finished in 2018.
Used in research for laser weaponry, operated in continuous-wave mode, can have power in the megawatt range. Deuterium fluoride laser ~3800 nm (3.6 to 4.2 μm) (~90% atm. transmittance) chemical reaction US military laser prototypes. COIL (chemical oxygen–iodine laser) 1.315 μm (<70% atmospheric transmittance)
The gyrotron is a type of free-electron maser that generates high-frequency electromagnetic radiation by stimulated cyclotron resonance of electrons moving through a strong magnetic field. [4] [5] It can produce high power at millimeter wavelengths because, as a fast-wave device, its dimensions can be much larger than the wavelength of the ...
Electrical energy is energy related to forces on electrically charged particles and the movement of those particles (often electrons in wires, but not always). This energy is supplied by the combination of current and electric potential (often referred to as voltage because electric potential is measured in volts) that is delivered by a circuit (e.g., provided by an electric power utility).
For example, an electron and a positron, each with a mass of 0.511 MeV/c 2, can annihilate to yield 1.022 MeV of energy. A proton has a mass of 0.938 GeV/c 2. In general, the masses of all hadrons are of the order of 1 GeV/c 2, which makes the GeV/c 2 a convenient unit of mass for particle physics: [4]
GE further developed the BWR-1 design with the 70 MW Big Rock Point (9×9, 11×11, 12×12) reactor, which (like all GE BWR models following Dresden 1) used the more economical direct cycle method of heat transfer, but disposed with the external recirculation pumps in favor of natural circulation (an unusual strategy that only the 55 MW ...
An electronic amplifier that delivers 10 watts of power to its load (e.g., a loudspeaker), while drawing 20 watts of power from a power source is 50% efficient. (10/20 × 100 = 50%) Electric kettle: more than 90% [citation needed] (comparatively little heat energy is lost during the 2 to 3 minutes a kettle takes to boil water).