Search results
Results from the WOW.Com Content Network
For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. The first four perfect numbers are 6, 28, 496 and 8128. [2] The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum.
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number ...
When a triple of numbers a, b and c forms a primitive Pythagorean triple, then (c minus the even leg) and one-half of (c minus the odd leg) are both perfect squares; however this is not a sufficient condition, as the numbers {1, 8, 9} pass the perfect squares test but are not a Pythagorean triple since 1 2 + 8 2 ≠ 9 2. At most one of a, b, c ...
The original, called Mersenne's conjecture, was a statement by Marin Mersenne in his Cogitata Physico-Mathematica (1644; see e.g. Dickson 1919) that the numbers were prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257 (sequence A109461 in the OEIS), and were composite for all other positive integers n ≤ 257.
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. (A divisor d of a number n is a unitary divisor if d and n/d share no common factors). The number 6 is the only number that is both a perfect number and a unitary perfect number.
In number theory, a perfect digit-to-digit invariant (PDDI; also known as a Munchausen number [1]) is a natural number in a given number base that is equal to the sum of its digits each raised to the power of itself. An example in base 10 is 3435, because = + + +.
The parity function maps a number to the number of 1's in its binary representation, modulo 2, so its value is zero for evil numbers and one for odious numbers. The Thue–Morse sequence , an infinite sequence of 0's and 1's, has a 0 in position i when i is evil, and a 1 in that position when i is odious.