enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    The above is obtained using a second order approximation, following the method used in estimating the first moment. It will be a poor approximation in cases where () is highly non-linear. This is a special case of the delta method.

  3. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    Example 3: Bounded normal mean: When estimating the mean of a normal vector (,), where it is known that ‖ ‖. The Bayes estimator with respect to a prior which is uniformly distributed on the edge of the bounding sphere is known to be minimax whenever M ≤ n {\displaystyle M\leq n\,\!} .

  4. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    This is justified by considering the central limit theorem in the log domain (sometimes called Gibrat's law). The log-normal distribution is the maximum entropy probability distribution for a random variate X —for which the mean and variance of ln(X) are specified. [5]

  5. Irwin–Hall distribution - Wikipedia

    en.wikipedia.org/wiki/Irwin–Hall_distribution

    By the Central Limit Theorem, as n increases, the Irwin–Hall distribution more and more strongly approximates a Normal distribution with mean = / and variance = /.To approximate the standard Normal distribution () = (=, =), the Irwin–Hall distribution can be centered by shifting it by its mean of n/2, and scaling the result by the square root of its variance:

  6. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    What is meant by best and simpler will depend on the application. A closely related topic is the approximation of functions by generalized Fourier series, that is, approximations based upon summation of a series of terms based upon orthogonal polynomials.

  7. Minimax approximation algorithm - Wikipedia

    en.wikipedia.org/wiki/Minimax_approximation...

    A minimax approximation algorithm ... given a function ... The Weierstrass approximation theorem states that every continuous function defined on a closed interval ...

  8. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  9. Padé approximant - Wikipedia

    en.wikipedia.org/wiki/Padé_approximant

    Henri Padé. In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating.