enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.

  3. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    He understood the importance of the discriminant of the cubic equation to find algebraic solutions to certain types of cubic equations. [18] In his book Flos, Leonardo de Pisa, also known as Fibonacci (1170–1250), was able to closely approximate the positive solution to the cubic equation x 3 + 2x 2 + 10x = 20.

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Because of this, different methods need to be used to solve BVPs. For example, the shooting method (and its variants) or global methods like finite differences, [3] Galerkin methods, [4] or collocation methods are appropriate for that class of problems. The Picard–Lindelöf theorem states that there is a unique solution, provided f is ...

  5. Equation - Wikipedia

    en.wikipedia.org/wiki/Equation

    In general, an algebraic equation or polynomial equation is an equation of the form =, or = [a] where P and Q are polynomials with coefficients in some field (e.g., rational numbers, real numbers, complex numbers). An algebraic equation is univariate if it involves only one variable.

  6. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating ⁠ ⁠ and ⁠ ⁠, which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Substitute this expression into the remaining equations. This yields a system of equations with one fewer equation and unknown. Repeat steps 1 and 2 until the system is reduced to a single linear equation. Solve this equation, and then back-substitute until the entire solution is found. For example, consider the following system:

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The tangent lines of x 3 − 2x + 2 at 0 and 1 intersect the x-axis at 1 and 0 respectively, illustrating why Newton's method oscillates between these values for some starting points. It is easy to find situations for which Newton's method oscillates endlessly between two distinct values.

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Consider the problem of calculating the shape of an unknown curve which starts at a given point and satisfies a given differential equation. Here, a differential equation can be thought of as a formula by which the slope of the tangent line to the curve can be computed at any point on the curve, once the position of that point has been calculated.