enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    The finite field with p n elements is denoted GF(p n) and is also called the Galois field of order p n, in honor of the founder of finite field theory, Évariste Galois. GF(p), where p is a prime number, is simply the ring of integers modulo p. That is, one can perform operations (addition, subtraction, multiplication) using the usual operation ...

  3. GF (2) - Wikipedia

    en.wikipedia.org/wiki/GF(2)

    GF (2) (also denoted , Z/2Z or ) is the finite field with two elements. [1][a] GF (2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual. The elements of GF (2) may be identified with the two possible values of a bit and to ...

  4. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    t. e. In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules.

  5. Linear-feedback shift register - Wikipedia

    en.wikipedia.org/wiki/Linear-feedback_shift_register

    In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.

  6. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).

  7. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    Given a prime number q and prime power q m with positive integers m and d such that d ≤ q m − 1, a primitive narrow-sense BCH code over the finite field (or Galois field) GF(q) with code length n = q m − 1 and distance at least d is constructed by the following method. Let α be a primitive element of GF(q m).

  8. Galois group - Wikipedia

    en.wikipedia.org/wiki/Galois_group

    In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory , so named in honor of ...

  9. Galois geometry - Wikipedia

    en.wikipedia.org/wiki/Galois_geometry

    Galois geometry. The Fano plane, the projective plane over the field with two elements, is one of the simplest objects in Galois geometry. Galois geometry (named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or Galois ...