Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
The statement of the general Möbius inversion formula [for partially ordered sets] was first given independently by Weisner (1935) and Philip Hall (1936); both authors were motivated by group theory problems. Neither author seems to have been aware of the combinatorial implications of his work and neither developed the theory of Möbius functions.
A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum. (A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.)
A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] toset [6] and loset [7] [8] are also used. The term chain is sometimes defined as a synonym of totally ordered set , [ 5 ] but generally refers to a totally ordered subset of a given partially ordered set.
If one sees a number as a set of its prime factors, then is a generalization of Möbius inversion formula for square-free natural numbers. Therefore, is seen as the Möbius inversion formula for the incidence algebra of the partially ordered set of all subsets of A.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
A given partially ordered set may have several different completions. For instance, one completion of any partially ordered set S is the set of its downwardly closed subsets ordered by inclusion. S is embedded in this (complete) lattice by mapping each element x to the lower set of elements that are less than or equal to x.
In combinatorics, every locally finite partially ordered set (poset) is assigned an incidence algebra. One distinguished member of this algebra is that poset's "Möbius function". The classical Möbius function treated in this article is essentially equal to the Möbius function of the set of all positive integers partially ordered by divisibility.