enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.

  3. Mean motion - Wikipedia

    en.wikipedia.org/wiki/Mean_motion

    Kepler's 3rd law of planetary motion states, the square of the periodic time is proportional to the cube of the mean distance, [4] or , where a is the semi-major axis or mean distance, and P is the orbital period as above.

  4. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    a is the orbit's semi-major axis; G is the gravitational constant, M is the mass of the more massive body. For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity. Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period T:

  5. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    The semi-major axis is known if the mean motion and the gravitational mass are known. [ 2 ] [ 3 ] It is also quite common to see either the mean anomaly ( M ) or the mean longitude ( L ) expressed directly, without either M 0 or L 0 as intermediary steps, as a polynomial function with respect to time.

  6. Sun-synchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Sun-synchronous_orbit

    Note that according to this approximation cos i equals −1 when the semi-major axis equals 12 352 km, which means that only lower orbits can be Sun-synchronous. The period can be in the range from 88 minutes for a very low orbit ( a = 6554 km , i = 96°) to 3.8 hours ( a = 12 352 km , but this orbit would be equatorial, with i = 180°).

  7. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For elliptical orbits it can also be calculated from the periapsis and apoapsis since = and = (+), where a is the length of the semi-major axis. = + = / / + = + where: r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse.

  8. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    semi-major axis = 23001 km; eccentricity = 0.566613; true anomaly at time t 1 = −7.577° true anomaly at time t 2 = 92.423° This y-value corresponds to Figure 3. With r 1 = 10000 km; r 2 = 16000 km; α = 260° one gets the same ellipse with the opposite direction of motion, i.e. true anomaly at time t 1 = 7.577°

  9. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The International Space Station has an orbital period of 91.74 minutes (5504 s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738 km. [citation needed] The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg.