Search results
Results from the WOW.Com Content Network
In particular, a C k-atlas that is C 0-compatible with a C 0-atlas that defines a topological manifold is said to determine a C k differential structure on the topological manifold. The C k equivalence classes of such atlases are the distinct C k differential structures of the manifold. Each distinct differential structure is determined by a ...
In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.
That is, the components a transform covariantly (by the matrix A rather than its inverse). The covariance of the components of a[f] is notationally designated by placing the indices of a i [f] in the lower position. Now, the metric tensor gives a means to identify vectors and covectors as follows. Holding X p fixed, the function
Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of det {\displaystyle \det } , evaluated at the identity matrix, is equal to the trace. The differential det ′ ( I ) {\displaystyle \det '(I)} is a linear operator that maps an n × n matrix to a real number.
A topological manifold that is in the image of is said to "admit a differentiable structure", and the fiber over a given topological manifold is "the different differentiable structures on the given topological manifold". Thus given two categories, the two natural questions are:
If there exists an m × n matrix A such that = + ‖ ‖ in which the vector ε → 0 as Δx → 0, then f is by definition differentiable at the point x. The matrix A is sometimes known as the Jacobian matrix , and the linear transformation that associates to the increment Δ x ∈ R n the vector A Δ x ∈ R m is, in this general setting ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
The set of all complex numbers with absolute value 1 (corresponding to points on the circle of center 0 and radius 1 in the complex plane) is a Lie group under complex multiplication: the circle group.