Search results
Results from the WOW.Com Content Network
A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set. [4]
The K-nearest neighbor classification performance can often be significantly improved through metric learning. Popular algorithms are neighbourhood components analysis and large margin nearest neighbor. Supervised metric learning algorithms use the label information to learn a new metric or pseudo-metric.
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
In k-nearest neighbor models, a high value of k leads to high bias and low variance (see below). In instance-based learning, regularization can be achieved varying the mixture of prototypes and exemplars. [13] In decision trees, the depth of the tree determines the variance. Decision trees are commonly pruned to control variance. [7]: 307
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Hyperparameter may refer to: Hyperparameter (machine learning) Hyperparameter (Bayesian statistics) This page was last edited on 5 October 2024, at 04:17 (UTC). Text ...
As with the term hyperparameter, the use of hyper is to distinguish it from a prior distribution of a parameter of the model for the underlying system. They arise particularly in the use of hierarchical models. [1] [2] For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution, then:
The HNSW graph offers an approximate k-nearest neighbor search which scales logarithmically even in high-dimensional data. It is an extension of the earlier work on navigable small world graphs presented at the Similarity Search and Applications (SISAP) conference in 2012 with an additional hierarchical navigation to find entry points to the ...