enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Essentially, the matrices A and Λ represent the same linear transformation expressed in two different bases. The eigenvectors are used as the basis when representing the linear transformation as Λ. Conversely, suppose a matrix A is diagonalizable. Let P be a non-singular square matrix such that P −1 AP is some diagonal matrix D.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    The decomposition can be derived from the fundamental property of eigenvectors: = = =. The linearly independent eigenvectors q i with nonzero eigenvalues form a basis (not necessarily orthonormal) for all possible products Ax, for x ∈ C n, which is the same as the image (or range) of the corresponding matrix transformation, and also the ...

  4. Diagonalizable matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonalizable_matrix

    The fundamental fact about diagonalizable maps and matrices is expressed by the following: An matrix over a field is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to , which is the case if and only if there exists a basis of consisting of eigenvectors of .

  5. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  6. Normal matrix - Wikipedia

    en.wikipedia.org/wiki/Normal_matrix

    In this special case, the columns of U * are eigenvectors of both A and B and form an orthonormal basis in C n. This follows by combining the theorems that, over an algebraically closed field, commuting matrices are simultaneously triangularizable and a normal matrix is diagonalizable – the added result is that these can both be done ...

  7. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    Using generalized eigenvectors, a set of linearly independent eigenvectors of can be extended, if necessary, to a complete basis for . [8] This basis can be used to determine an "almost diagonal matrix" J {\displaystyle J} in Jordan normal form , similar to A {\displaystyle A} , which is useful in computing certain matrix functions of A ...

  8. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.

  9. Commuting matrices - Wikipedia

    en.wikipedia.org/wiki/Commuting_matrices

    As a direct consequence of simultaneous triangulizability, the eigenvalues of two commuting complex matrices A, B with their algebraic multiplicities (the multisets of roots of their characteristic polynomials) can be matched up as in such a way that the multiset of eigenvalues of any polynomial (,) in the two matrices is the multiset of the ...