enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    The first terms of the series sum to approximately ⁡ +, where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it is a divergent series .

  3. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    The sum of the reciprocal of the primes increasing without bound. The x axis is in log scale, showing that the divergence is very slow. The red function is a lower bound that also diverges.

  4. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series. This value is the limit as ⁠ ⁠ tends to infinity of the finite sums of the ⁠ ⁠ first terms of the series if the limit exists.

  6. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The sum of the series is approximately equal to 1.644934. [3] The Basel problem asks for the exact sum of this series (in closed form), as well as a proof that this sum is correct. Euler found the exact sum to be / and announced this discovery in 1735. His arguments were based on manipulations that were not justified at the time, although he ...

  7. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum.It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus.

  8. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The first several terms from the second series can be substituted into each term of the first series. Because the first term in the second series has degree 2, three terms of the first series suffice to give a 7th-degree polynomial:

  9. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    The Leibniz formula can be interpreted as a Dirichlet series using the unique non-principal Dirichlet character modulo 4. As with other Dirichlet series, this allows the infinite sum to be converted to an infinite product with one term for each prime number. Such a product is called an Euler product.