enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Nevertheless, his argument in al-Fakhri is the earliest extant proof of the sum formula for integral cubes. [9] In India, early implicit proofs by mathematical induction appear in Bhaskara's "cyclic method". [10] None of these ancient mathematicians, however, explicitly stated the induction hypothesis.

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent "2n − 1 is odd": (i) For n = 1, 2n − 1 = 2(1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  5. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...

  6. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    Among the applications of the product rule is a proof that = when n is a positive integer (this rule is true even if n is not positive or is not an integer, but the proof of that must rely on other methods). The proof is by mathematical induction on the exponent n.

  7. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    The Fermat numbers satisfy the following recurrence relations: = + = + for n ≥ 1, = + = for n2.Each of these relations can be proved by mathematical induction.From the second equation, we can deduce Goldbach's theorem (named after Christian Goldbach): no two Fermat numbers share a common integer factor greater than 1.

  8. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...

  9. Structural induction - Wikipedia

    en.wikipedia.org/wiki/Structural_induction

    Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .