Search results
Results from the WOW.Com Content Network
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution , and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters .
For example, the number of insurance claims within a population for a certain type of risk would be zero-inflated by those people who have not taken out insurance against the risk and thus are unable to claim. The zero-inflated Poisson (ZIP) model mixes two zero generating processes. The first process generates zeros.
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
For example, a simple univariate regression may propose (,) = +, suggesting that the researcher believes = + + to be a reasonable approximation for the statistical process generating the data. Once researchers determine their preferred statistical model , different forms of regression analysis provide tools to estimate the parameters β ...
In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.
The Poisson distribution has one free parameter and does not allow for the variance to be adjusted independently of the mean. The choice of a distribution from the Poisson family is often dictated by the nature of the empirical data. For example, Poisson regression analysis is commonly used to model count data. If overdispersion is a feature ...
In statistics, linear regression is a model that estimates the linear relationship between a scalar ... Some common examples of GLMs are: Poisson regression for count ...
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.