Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Ethyl sulfate can be produced in a laboratory setting by reacting ethanol with sulfuric acid under a gentle boil, while keeping the reaction below 140 °C. The sulfuric acid must be added dropwise or the reaction must be actively cooled because the reaction itself is highly exothermic. CH 3 CH 2 OH + H 2 SO 4 → CH 3 CH 2 OSO 3 H + H 2 O
C 6 H 6 + H 2 SO 4 + SOCl 2 → C 6 H 5 SO 3 H + SO 2 + 2 HCl. Historically, mercurous sulfate has been used to catalyze the reaction. [3] Chlorosulfuric acid is also an effective agent: C 6 H 6 + HSO 3 Cl → C 6 H 5 SO 3 H + HCl. In contrast to aromatic nitration and most other electrophilic aromatic substitutions this reaction is reversible ...
Conversion of 2,5-dimethylhexyne-2,5-diol to 2,2,5,5-tetramethylte-trahydrofuran-3-one. Mercury sulfate, as well as other mercury(II) compounds, are commonly used as catalysts in oxymercuration-demercuration, a type of electrophilic addition reaction that results in hydration of an unsaturated compound. The hydration of an alkene gives an alcohol.
Hydroboration–oxidation reaction is a two-step hydration reaction that converts an alkene into an alcohol. [1] The process results in the syn addition of a hydrogen and a hydroxyl group where the double bond had been. Hydroboration–oxidation is an anti-Markovnikov reaction, with
Other processes may take place competitively under basic conditions, particularly when β-elimination is slow or not possible. [6] These pathways likely begin with lithiation of a carbon in the epoxide ring, followed by α-elimination to afford a carbene intermediate. 1,2-hydrogen migration leads to ketones, [2] while intramolecular C–H insertion affords cyclic alcohols with the formation of ...
The reaction is often carried out without a solvent (particularly when a large reagent excess of the alcohol reagent is used) or in a non-polar solvent (e.g. toluene, hexane) that can facilitate Dean–Stark distillation to remove the water byproduct. [4] Typical reaction times vary from 1–10 hours at temperatures of 60–110 °C.
The Williamson ether synthesis is an organic reaction, forming an ether from an organohalide and a deprotonated alcohol . This reaction was developed by Alexander Williamson in 1850. [2] Typically it involves the reaction of an alkoxide ion with a primary alkyl halide via an S N 2 reaction.