Search results
Results from the WOW.Com Content Network
Milankovitch cycles describe the collective effects of ... changes in the Earth's orbit and internal oscillations of the climate system. ... to the need to explain ...
δ 18 O, a proxy for temperature, for the last 600,000 years (an average from several deep sea sediment carbonate samples) [a]. The 100,000-year problem (also 100 ky problem or 100 ka problem) of the Milankovitch theory of orbital forcing refers to a discrepancy between the reconstructed geologic temperature record and the reconstructed amount of incoming solar radiation, or insolation over ...
Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the Sun (see Milankovitch cycles).These orbital changes modify the total amount of sunlight reaching the Earth by up to 25% at mid-latitudes (from 400 to 500 W/(m 2) at latitudes of 60 degrees).
The astronomical components, discovered by the Serbian geophysicist Milutin Milanković and now known as Milankovitch cycles, include the axial tilt of Earth, the orbital eccentricity (or shape of the orbit), and the precession (or wobble) of Earth's rotation. The tilt of the axis tends to fluctuate from 21.5° to 24.5° and back every 41,000 ...
Milankovitch knew that the moon rotates on its axis in 27.32 days, so lunar daytime on one side of the moon last about 13.5 Earth days. Milankovitch calculated that the temperature after a long moon night, in the early morning on the Moon, or before the rise of the Sun over horizon, was −53.8 °C (−64.8 °F).
Astronomical cycles (also known as Milankovitch cycles) are variations of the Earth's orbit around the Sun due to the gravitational interaction with other masses within the Solar System. [1] Due to this cyclicity, solar irradiation differs through time on different hemispheres and seasonality is affected.
A strict application of the Milankovitch theory does not allow the prediction of a "rapid" ice age onset (i.e., less than a century or two) since the fastest orbital period is about 20,000 years. [ citation needed ] Some creative ways around this were found, notably one championed by Nigel Calder under the name of "snowblitz", but these ideas ...
Croll was the leading proponent of an astronomical-based theory of climate change, now known as the "Astronomical Theory of Climate Change". [5] Using formulae for orbital variations developed by Urbain Le Verrier (which had led to the discovery of Neptune), Croll developed a theory of the effects of variations of the Earth's orbit on climate cycles.