Search results
Results from the WOW.Com Content Network
In scientific research, the null hypothesis (often denoted H 0) [1] is the claim that the effect being studied does not exist. [note 1] The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data or variables being analyzed. If the null hypothesis is true, any experimentally observed ...
In science, a null result is a result without the expected content: that is, the proposed result is absent. [1] It is an experimental outcome which does not show an otherwise expected effect. This does not imply a result of zero or nothing, simply a result that does not support the hypothesis .
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis.
In statistical hypothesis testing, the null distribution is the probability distribution of the test statistic when the null hypothesis is true. [1] For example, in an F-test, the null distribution is an F-distribution. [2] Null distribution is a tool scientists often use when conducting experiments.
In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false negatives that reject the alternative hypothesis when it is true). [a]
In 1970, L. A. Marascuilo and J. R. Levin proposed a "fourth kind of error" – a "type IV error" – which they defined in a Mosteller-like manner as being the mistake of "the incorrect interpretation of a correctly rejected hypothesis"; which, they suggested, was the equivalent of "a physician's correct diagnosis of an ailment followed by the ...
Since the null hypothesis for Tukey's test states that all means being compared are from the same population (i.e. μ 1 = μ 2 = μ 3 = ... = μ k), the means should be normally distributed (according to the central limit theorem) with the same model standard deviation σ, estimated by the merged standard error, , for all the samples; its ...