Ad
related to: division of algebra and geometry problems 5th degree equationseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Printable Workbooks
Search results
Results from the WOW.Com Content Network
Solving quintic equations in terms of radicals (nth roots) was a major problem in algebra from the 16th century, when cubic and quartic equations were solved, until the first half of the 19th century, when the impossibility of such a general solution was proved with the Abel–Ruffini theorem.
The central idea of Galois' theory is to consider permutations (or rearrangements) of the roots such that any algebraic equation satisfied by the roots is still satisfied after the roots have been permuted. Originally, the theory had been developed for algebraic equations whose coefficients are rational numbers.
We call D a division algebra if for any element a in D and any non-zero element b in D there exists precisely one element x in D with a = bx and precisely one element y in D such that a = yb. For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it ...
In algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing ...
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects. The fundamental objects of study in algebraic geometry are algebraic ...
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient. At an elementary level the division of two natural numbers is, among other possible interpretations ...
Brauer group. In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer. The Brauer group arose out of attempts to classify division algebras over a field.
Ruffini's rule. In mathematics, Ruffini's rule is a method for computation of the Euclidean division of a polynomial by a binomial of the form x – r. It was described by Paolo Ruffini in 1809. [1] The rule is a special case of synthetic division in which the divisor is a linear factor.
Ad
related to: division of algebra and geometry problems 5th degree equationseducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch