Search results
Results from the WOW.Com Content Network
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time.Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration".
Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame [ H 1 ] [ 1 ] constitute an important and useful coordinate chart ...
Test theories of special relativity are flat spacetime theories which are used to test the predictions of special relativity. They differ from the two-postulate special relativity by differentiating between the one-way speed of light and the two-way speed of light. This results in different notions of time simultaneity.
In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time.In Albert Einstein's 1905 paper, On the Electrodynamics of Moving Bodies, the theory is presented as being based on just two postulates: [p 1] [1] [2]
Animation clip visualizing the effects of special relativity on fast moving objects. Relativity Calculator – Learn Special Relativity Mathematics The mathematics of special relativity presented in as simple and comprehensive manner possible within philosophical and historical contexts.
The special theory of relativity, formulated in 1905 by Albert Einstein, implies that addition of velocities does not behave in accordance with simple vector addition.. In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light.
Calculating the Minkowski norm squared of the four-momentum gives a Lorentz invariant quantity equal (up to factors of the speed of light c) to the square of the particle's proper mass: = = = + | | = where = is the metric tensor of special relativity with metric signature for definiteness chosen to be (–1, 1, 1, 1).