Search results
Results from the WOW.Com Content Network
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
Exploration of the Earth's Magnetosphere Archived 2013-02-14 at the Wayback Machine, Educational web site by David P. Stern and Mauricio Peredo; International Geomagnetic Reference Field 2011; Global evolution/anomaly of the Earth's magnetic field Archived 2016-06-24 at the Wayback Machine Sweeps are in 10° steps at 10 years intervals.
The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere . The outer boundary of the plasmasphere is known as the plasmapause , which is defined by an order of magnitude drop in plasma density.
The inner Van Allen Belt extends typically from an altitude of 0.2 to 2 Earth radii (L values of 1.2 to 3) or 1,000 km (620 mi) to 12,000 km (7,500 mi) above the Earth. [ 4 ] [ 20 ] In certain cases, when solar activity is stronger or in geographical areas such as the South Atlantic Anomaly , the inner boundary may decline to roughly 200 km ...
The Earth's "plasma fountain", showing oxygen, helium, and hydrogen ions which gush into space from regions near the Earth's poles. The faint yellow area shown above the north pole represents gas lost from Earth into space; the green area is the aurora borealis-or plasma energy pouring back into the atmosphere. [2
Artistic representation of Earth's magnetosphere. The plasma sheet is highlighted in yellow. In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm 3 versus 0.01-0.02 in the lobes) [citation needed] hot plasma and lower magnetic field located on the magnetotail and near the equatorial plane, between the magnetosphere's north and south lobes.
the Earth's mass, its gravitational field, and its angular inertia. These are all affected by the density and dimensions of the inner layers. [20] the natural oscillation frequencies and modes of the whole Earth oscillations, when large earthquakes make the planet "ring" like a bell. These oscillations also depend strongly on the inner layers ...
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.