Search results
Results from the WOW.Com Content Network
Autosomal dominant A 50/50 chance of inheritance. Sickle-cell disease is inherited in the autosomal recessive pattern. When both parents have sickle-cell trait (carrier), a child has a 25% chance of sickle-cell disease (red icon), 25% do not carry any sickle-cell alleles (blue icon), and 50% have the heterozygous (carrier) condition. [1]
Autosomal traits are associated with a single gene on an autosome (non-sex chromosome)—they are called "dominant" because a single copy—inherited from either parent—is enough to cause this trait to appear. This often means that one of the parents must also have the same trait, unless it has arisen due to an unlikely new mutation.
The following is a list of genetic disorders and if known, type of mutation and for the chromosome involved. Although the parlance "disease-causing gene" is common, it is the occurrence of an abnormality in the parents that causes the impairment to develop within the child. There are over 6,000 known genetic disorders in humans.
Heredity, also called inheritance or biological inheritance, is the passing on of traits from parents to their offspring; either through asexual reproduction or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents.
•List of human protein-coding genes page 4 covers genes SLC17A8–ZZZ3 NB: Each list page contains 5000 human protein-coding genes, sorted alphanumerically by the HGNC-approved gene symbol. Follow the Python code link for information about updates to the list of genes on these pages.
Y-linked inheritance Pedigree tree showing the inheritance of a Y-linked trait. Y linkage, also known as holandric inheritance (from Ancient Greek ὅλος hólos, "whole" + ἀνδρός andrós, "male"), [1] describes traits that are produced by genes located on the Y chromosome. It is a form of sex linkage. Y linkage can be difficult to detect.
The following outline is provided as an overview of and topical guide to genetics: . Genetics – science of genes, heredity, and variation in living organisms. [1] [2] Genetics deals with the molecular structure and function of genes, and gene behavior in context of a cell or organism (e.g. dominance and epigenetics), patterns of inheritance from parent to offspring, and gene distribution ...
Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.