enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    As mentioned earlier in the article the convection heat transfer coefficient for each stream depends on the type of fluid, flow properties and temperature properties. Some typical heat transfer coefficients include: Air - h = 10 to 100 W/(m 2 K) Water - h = 500 to 10,000 W/(m 2 K).

  3. List of thermal conductivities - Wikipedia

    en.wikipedia.org/wiki/List_of_thermal_conductivities

    TPRC standard air is very nearly equivalent to typical air worldwide. Air, wet airTypical Air [31] Air in motor windings at normal pressure, Lasance approximations 360 Kelvins 10 −2 meters: 0.03039 10 −3 meters: 0.03038 10 −4 meters: 0.03031 10 −5 meters: 0.02959 List, TPRC Vol 3 page 512. [24] [28] 360

  4. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    In thermal fluid dynamics, the Nusselt number (Nu, after Wilhelm Nusselt [1]: 336 ) is the ratio of total heat transfer to conductive heat transfer at a boundary in a fluid. Total heat transfer combines conduction and convection. Convection includes both advection (fluid motion) and diffusion (conduction). The conductive component is measured ...

  5. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    In classical natural convective heat transfer, the heat transfer coefficient is dependent on the temperature. However, Newton's law does approximate reality when the temperature changes are relatively small, and for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference.

  6. Bulk temperature - Wikipedia

    en.wikipedia.org/wiki/Bulk_temperature

    In thermofluids dynamics, the bulk temperature, or the average bulk temperature in the thermal fluid, is a convenient reference point for evaluating properties related to convective heat transfer, particularly in applications related to flow in pipes and ducts.

  7. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .

  8. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...

  9. Biot number - Wikipedia

    en.wikipedia.org/wiki/Biot_number

    The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body.