Search results
Results from the WOW.Com Content Network
Vestigiality is the retention, during the process of evolution, of genetically determined structures or attributes that have lost some or all of the ancestral function in a given species. [1] Assessment of the vestigiality must generally rely on comparison with homologous features in related species. The emergence of vestigiality occurs by ...
Homologous sequences are paralogous if they were created by a duplication event within the genome. For gene duplication events, if a gene in an organism is duplicated, the two copies are paralogous. They can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox genes in animals.
Human vestigiality. The muscles connected to the ears of a human do not develop enough to have the same mobility allowed to monkeys. Arrows show the vestigial structure called Darwin's tubercle. In the context of human evolution, vestigiality involves those traits occurring in humans that have lost all or most of their original function through ...
Evidence for common descent comes from the existence of vestigial structures. [72] These rudimentary structures are often homologous to structures that correspond in related or ancestral species. A wide range of structures exist such as mutated and non-functioning genes, parts of a flower, muscles, organs, and even behaviors.
Comparative anatomy studies similarities and differences in organisms. The image shows homologous bones in the upper limb of various vertebrates. Comparative anatomy is the study of similarities and differences in the anatomy of different species. It is closely related to evolutionary biology and phylogeny [1] (the evolution of species).
Strong evidence for evolution comes from the analysis of homologous structures: structures in different species that no longer perform the same task but which share a similar structure. [48] Such is the case of the forelimbs of mammals. The forelimbs of a human, cat, whale, and bat all have strikingly similar bone structures. However, each of ...
Sequence homology is the biological homology between DNA, RNA, or protein sequences, defined in terms of shared ancestry in the evolutionary history of life. Two segments of DNA can have shared ancestry because of three phenomena: either a speciation event (orthologs), or a duplication event (paralogs), or else a horizontal (or lateral) gene ...
Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy.