Search results
Results from the WOW.Com Content Network
Drugs that interfere with the secretion or action of aldosterone are in use as antihypertensives, like lisinopril, which lowers blood pressure by blocking the angiotensin-converting enzyme (ACE), leading to lower aldosterone secretion. The net effect of these drugs is to reduce sodium and water retention but increase the retention of potassium.
In the adrenal cortex, angiotensin II acts to cause the release of aldosterone. Aldosterone acts on the tubules (e.g., the distal convoluted tubules and the cortical collecting ducts) in the kidneys, causing them to reabsorb more sodium and water from the urine. This increases blood volume and, therefore, increases blood pressure.
Aldosterone acts on the kidneys to provide active reabsorption of sodium and an associated passive reabsorption of water, as well as the active secretion of potassium in the principal cells of the cortical collecting tubule and active secretion of protons via proton ATPases in the lumenal membrane of the intercalated cells of the collecting tubule.
Antimineralocorticoid mechanism of action. Aldosterone is a mineralocorticoid which is synthesized in the adrenal glands. [5] When aldosterone is secreted from the adrenal glands, it binds to the mineralocorticoid receptor in the renal tubule cell and forms a complex. [6]
It selectively stimulates secretion of aldosterone. The secretion of aldosterone has a diurnal rhythm. Control of aldosterone release from the adrenal cortex: [citation needed] The role of the renin–angiotensin system: Angiotensin is involved in regulating aldosterone and is the core regulator. Angiotensin II acts synergistically with potassium.
The mineralocorticoid receptor (or MR, MLR, MCR), also known as the aldosterone receptor or nuclear receptor subfamily 3, group C, member 2, (NR3C2) is a protein that in humans is encoded by the NR3C2 gene that is located on chromosome 4q31.1-31.2. [5] MR is a receptor with equal affinity for mineralocorticoids and glucocorticoids.
This layer is the main site for production of aldosterone, a mineralocorticoid, by the action of the enzyme aldosterone synthase. [16] [17] Aldosterone plays an important role in the long-term regulation of blood pressure. [18]
Aldosterone binds to aldosterone receptors (mineralocorticoid receptors) increasing sodium reabsorption in an effort to increase blood pressure and improve fluid status in the body. When excessive sodium reabsorption occurs, there is an increasing loss of K + in the urine and can lead to clinically significant decreases, termed hypokalemia .