Search results
Results from the WOW.Com Content Network
Parts-per notation is often used describing dilute solutions in chemistry, for instance, the relative abundance of dissolved minerals or pollutants in water.The quantity "1 ppm" can be used for a mass fraction if a water-borne pollutant is present at one-millionth of a gram per gram of sample solution.
Suppose there are known concentrations of nickel in a set of calibration solutions: 0 ppm, 1.6 ppm, 3.2 ppm, 4.8 ppm, 6.4 ppm, and 8 ppm. Each solution also has 5 ppm yttrium to act as an internal standard. If these solutions are measured using ICP-OES, the intensity of the yttrium signal should be consistent across all solutions.
Some mass spectrometrists use the definition that is similar to definitions used in some other fields of physics and chemistry. In this case, resolving power is defined as: R = M Δ M = r e s o l v i n g p o w e r {\displaystyle R={\cfrac {M}{\Delta M}}=\mathrm {resolving\ power} }
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.
In solutions, mass concentration is commonly encountered as the ratio of mass/[volume solution], or m/v. In water solutions containing relatively small quantities of dissolved solute (as in biology), such figures may be "percentivized" by multiplying by 100 a ratio of grams solute per mL solution. The result is given as "mass/volume percentage".
This improper name persists, especially in elementary textbooks. In biology, the unit "%" is sometimes (incorrectly) used to denote mass concentration, also called mass/volume percentage. A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because ...
The accurate mass (more appropriately, the measured accurate mass [9]) is an experimentally determined mass that allows the elemental composition to be determined. [10] For molecules with mass below 200 Da, 5 ppm accuracy is often sufficient to uniquely determine the elemental composition. [11]
Total dissolved solids are differentiated from total suspended solids (TSS), in that the latter cannot pass through a sieve of 2 micrometers and yet are indefinitely suspended in solution. The term settleable solids refers to material of any size that will not remain suspended or dissolved in a holding tank not subject to motion, and excludes ...