Search results
Results from the WOW.Com Content Network
NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.
Python bindings of the widely used computer vision library OpenCV utilize NumPy arrays to store and operate on data. Since images with multiple channels are simply represented as three-dimensional arrays, indexing, slicing or masking with other arrays are very efficient ways to access specific pixels of an image. The NumPy array as universal ...
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
Numerical linear algebra library with long history librsb: Michele Martone C, Fortran, M4 2011 1.2.0 / 09.2016 Free GPL: High-performance multi-threaded primitives for large sparse matrices. Support operations for iterative solvers: multiplication, triangular solve, scaling, matrix I/O, matrix rendering.
is how one would use Fortran to create arrays from the even and odd entries of an array. Another common use of vectorized indices is a filtering operation. Consider a clipping operation of a sine wave where amplitudes larger than 0.5 are to be set to 0.5. Using S-Lang, this can be done by y = sin(x); y[where(abs(y)>0.5)] = 0.5;
Dask Array [16] is a high-level collection that parallelizes array-based workloads and maintains the familiar NumPy API, such as slicing, arithmetic, reductions, mathematics, etc., making it easy for Numpy users to scale up array operations. A Dask array comprises many smaller n-dimensional Numpy arrays and uses a blocked algorithm to enable ...
In C++ several linear algebra libraries exploit the language's ability to overload operators. In some cases a very terse abstraction in those languages is explicitly influenced by the array programming paradigm, as the NumPy extension library to Python, Armadillo and Blitz++ libraries do. [11] [12]
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.