Search results
Results from the WOW.Com Content Network
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
Electroosmotic pumps are fabricated from silica nanospheres [6] [7] or hydrophilic porous glass, the pumping mechanism is generated by an external electric field applied on an electric double layer (EDL), generates high pressures (e.g., more than 340 atm (34 MPa) at 12 kV applied potentials) and high flow rates (e.g., 40 ml/min at 100 V in a pumping structure less than 1 cm 3 in volume).
The difference between them and the closely related Euler equations is that Navier–Stokes equations take viscosity into account while the Euler equations model only inviscid flow. As a result, the Navier–Stokes are an elliptic equation and therefore have better analytic properties, at the expense of having less mathematical structure (e.g ...
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of photonics equations; List of relativistic equations; Table of thermodynamic equations
Then for an ideal gas the compressible Euler equations can be simply expressed in the mechanical or primitive variables specific volume, flow velocity and pressure, by taking the set of the equations for a thermodynamic system and modifying the energy equation into a pressure equation through this mechanical equation of state. At last, in ...
Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. [1] [2] Electrohydrodynamics (EHD) is a joint domain of electrodynamics and fluid dynamics mainly focused on the fluid motion induced by electric fields.
The Starling equation describes these forces in mathematical terms. It is one of the Kedem–Katchalski equations which bring nonsteady state thermodynamics to the theory of osmotic pressure across membranes that are at least partly permeable to the solute responsible for the osmotic pressure difference.
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. [1] [2] Most modern equations of state are formulated in the Helmholtz free energy.