Search results
Results from the WOW.Com Content Network
The dimeric silicon dioxide, (SiO 2) 2 has been obtained by reacting O 2 with matrix isolated dimeric silicon monoxide, (Si 2 O 2). In dimeric silicon dioxide there are two oxygen atoms bridging between the silicon atoms with an Si–O–Si angle of 94° and bond length of 164.6 pm and the terminal Si–O bond length is 150.2 pm.
The number of possible isomers increases rapidly with the number of silicon atoms. The members of the series (in terms of number of silicon atoms) follow: silane, SiH 4, 1 silicon atom and 4 hydrogen atoms, analogous to methane; disilane, Si 2 H 6 or H 3 Si−SiH 3, 2 silicon atoms and 6 hydrogen atoms, analogous to ethane
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17. Transition metals form metallic silicides, with the exceptions of silver, gold and the group 12 elements. The general composition is M n Si or MSi n with n ranging from 1 to 6 and M standing for metal.
Metal silicides, silicon halides, and similar inorganic compounds can be prepared by directly reacting elemental silicon or silicon dioxide with stable metals or with halogens. Silanes, compounds of silicon and hydrogen, are often used as strong reducing agents, and can be prepared from aluminum–silicon alloys and hydrochloric acid .
Atomicity is the total number of atoms present in a molecule of an element. For example, each molecule of oxygen (O 2) is composed of two oxygen atoms. Therefore, the atomicity of oxygen is 2. [1] In older contexts, atomicity is sometimes equivalent to valency. Some authors also use the term to refer to the maximum number of valencies observed ...
A silicon–oxygen bond (Si−O bond) is a chemical bond between silicon and oxygen atoms that can be found in many inorganic and organic compounds. [1] In a silicon–oxygen bond, electrons are shared unequally between the two atoms, with oxygen taking the larger share due to its greater electronegativity.
It is widely distributed throughout space in cosmic dusts, planetoids, and planets as various forms of silicon dioxide (silica) or silicates. More than 90% of the Earth's crust is composed of silicate minerals , making silicon the second most abundant element in the Earth's crust (about 28% by mass), after oxygen .