Search results
Results from the WOW.Com Content Network
Diatonic scale on C, equal tempered Play ⓘ and Ptolemy's intense or just Play ⓘ.. Ptolemy's intense diatonic scale, also known as the Ptolemaic sequence, [1] justly tuned major scale, [2] [3] [4] Ptolemy's tense diatonic scale, or the syntonous (or syntonic) diatonic scale, is a tuning for the diatonic scale proposed by Ptolemy, [5] and corresponding with modern 5-limit just intonation. [6]
Ptolemy, in his Harmonics, ii.3–11, construed the tonoi differently, presenting all seven octave species within a fixed octave, through chromatic inflection of the scale degrees (comparable to the modern conception of building all seven modal scales on a single tonic). In Ptolemy's system, therefore there are only seven tonoi.
Any sequence of seven successive white keys plays a diatonic scale. Of Glarean's six natural scales, three have a major third/first triad: (Ionian, Lydian, and Mixolydian), and three have a minor one: Dorian, Phrygian, and Aeolian). To these may be added the seventh diatonic scale, with a diminished fifth above the reference note, the Locrian ...
Claudius Ptolemy of Alexandria described several 7-limit tuning systems for the diatonic and chromatic genera. He describes several "soft" (μαλακός) diatonic tunings which all use 7-limit intervals. [7] One, called by Ptolemy the "tonic diatonic," is ascribed to the Pythagorean philosopher and statesman Archytas of Tarentum.
Some fixed just intonation scales and systems, such as the diatonic scale above, produce wolf intervals when the approximately equivalent flat note is substituted for a sharp note not available in the scale, or vice versa. The above scale allows a minor tone to occur next to a semitone which produces the awkward ratio 32:27 for D→F, and still ...
The Pythagorean scale is any scale which can be constructed from only pure perfect fifths (3:2) and octaves (2:1). [5] In Greek music it was used to tune tetrachords, which were composed into scales spanning an octave. [6] A distinction can be made between extended Pythagorean tuning and a 12-tone Pythagorean temperament.
Ptolemy substituted a diatonic sequence of seven transpositions pitched either a whole tone or a semitone apart. The entire double-octave scale system was then transposed onto each of these relative pitch levels, requiring (in modern terms) a different key signature in each case, and therefore a different sequence of whole and half steps in the ...
Ptolemy, in his Harmonics, ii.3–11, construed the tonoi differently, presenting all seven octave species within a fixed octave, through chromatic inflection of the scale degrees (comparable to the modern conception of building all seven modal scales on a single tonic). In Ptolemy's system, therefore there are only seven tonoi.