Search results
Results from the WOW.Com Content Network
Generative Pre-trained Transformer 2 (GPT-2) is a large language model by OpenAI and the second in their foundational series of GPT models. GPT-2 was pre-trained on a dataset of 8 million web pages. [2] It was partially released in February 2019, followed by full release of the 1.5-billion-parameter model on November 5, 2019. [3] [4] [5]
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
GPT-3, specifically the Codex model, was the basis for GitHub Copilot, a code completion and generation software that can be used in various code editors and IDEs. [ 38 ] [ 39 ] GPT-3 is used in certain Microsoft products to translate conventional language into formal computer code.
A depth-guided model, named "depth2img", was introduced with the release of Stable Diffusion 2.0 on November 24, 2022; this model infers the depth of the provided input image, and generates a new output image based on both the text prompt and the depth information, which allows the coherence and depth of the original input image to be ...
A foundation model, also known as large X model (LxM), is a machine learning or deep learning model that is trained on vast datasets so it can be applied across a wide range of use cases. [1] Generative AI applications like Large Language Models are often examples of foundation models.
Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...
BERT is meant as a general pretrained model for various applications in natural language processing. That is, after pre-training, BERT can be fine-tuned with fewer resources on smaller datasets to optimize its performance on specific tasks such as natural language inference and text classification , and sequence-to-sequence-based language ...
DVC is a free and open-source, platform-agnostic version system for data, machine learning models, and experiments. [1] It is designed to make ML models shareable, experiments reproducible, [2] and to track versions of models, data, and pipelines. [3] [4] [5] DVC works on top of Git repositories [6] and cloud storage. [7]