Search results
Results from the WOW.Com Content Network
The difference of temperatures between the freezing- and boiling-points of water under standard atmospheric pressure shall be called 100 degrees. (The same increment as the Celsius scale) Thomson's best estimates at the time were that the temperature of freezing water was 273.7 K and the temperature of boiling water was 373.7 K. [32]
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 ... K f [2] K b [1] Water: 100.00 0.512 0.00 –1.86 K b ...
For temperature range: 173.15 K to 273.15 K or equivalently −100 °C to 0 °C At triple point. An important basic value, which is not registered in the table, is the saturated vapor pressure at the triple point of water. The internationally accepted value according to measurements of Guildner, Johnson and Jones (1976) amounts to:
Kelvin Rankine Fahrenheit Celsius Réaumur Temperature Absolute zero: 0 K 0 °Ra −459.67 °F −273.15 °C -218.52 °Ré Freezing point of brine [a] 255.37 K 459.67 °Ra 0 °F −17.78 °C −14.224 °Ré Freezing point of water [b] 273.15 K 491.67 °Ra 32 °F 0 °C 0 °Ré Boiling point of water [c] 373.1339 K 671.64102 °Ra
For instance, precise measurements show that the boiling point of VSMOW water under one standard atmosphere of pressure is actually 373.1339 K (99.9839 °C) when adhering strictly to the two-point definition of thermodynamic temperature. When calibrated to ITS–90, where one must interpolate between the defining points of gallium and indium ...
In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...
The temperature and pressure at which ordinary solid, liquid, and gaseous water coexist in equilibrium is a triple point of water. Since 1954, this point had been used to define the base unit of temperature, the kelvin, [45] [46] but, starting in 2019, the kelvin is now defined using the Boltzmann constant, rather than the triple point of water ...
T f is the freezing point of the pure solvent in kelvin. Δ H fus is the molar enthalpy of fusion of the solvent. The K f for water is 1.853 K kg mol −1 .