Search results
Results from the WOW.Com Content Network
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...
Download as PDF; Printable version; In other projects ... known as the tensor ... We first construct differential 1-forms from 0-forms and deduce some of their basic ...
A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.
In mathematics, a tensor is a certain kind of geometrical entity and array concept. It generalizes the concepts of scalar , vector and linear operator , in a way that is independent of any chosen frame of reference .
Tensor [4] is a tensor package written for the Mathematica system. It provides many functions relevant for General Relativity calculations in general Riemann–Cartan geometries. Ricci [5] is a system for Mathematica 2.x and later for doing basic tensor analysis, available for free.
[a] [1] [2] [3] It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), tensor calculus or tensor analysis developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. [4]
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition.It may be regarded as one type of generalization of the matrix singular value decomposition.