enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard enthalpy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_formation

    This is true for all enthalpies of formation. The standard enthalpy of formation is measured in units of energy per amount of substance, usually stated in kilojoule per mole (kJ mol −1), but also in kilocalorie per mole, joule per mole or kilocalorie per gram (any combination of these units conforming to the energy per mass or amount guideline).

  3. Standard enthalpy of reaction - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_reaction

    The standard enthalpy of reaction (denoted ) for a chemical reaction is the difference between total product and total reactant molar enthalpies, calculated for substances in their standard states. The value can be approximately interpreted in terms of the total of the chemical bond energies for bonds broken and bonds formed.

  4. Thermodynamic databases for pure substances - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_databases...

    The solid line refers to the entropy of strontium in its normal standard state at 1 atm pressure. The dashed line refers to the entropy of strontium vapor in a non-physical state. The standard entropy change for the formation of a compound from the elements, or for any standard reaction is designated ΔS° form or ΔS° rx. The entropy change ...

  5. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpies and enthalpy changes for reactions vary as a function of temperature, [5] but tables generally list the standard heats of formation of substances at 25 °C (298 K). For endothermic (heat-absorbing) processes, the change Δ H is a positive value; for exothermic (heat-releasing) processes it is negative.

  6. Standard Gibbs free energy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_Gibbs_free_energy...

    The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).

  7. Hess's law - Wikipedia

    en.wikipedia.org/wiki/Hess's_law

    Hess's law is useful in the determination of enthalpies of the following: [2] Heats of formation of unstable intermediates like CO (g) and NO (g). Heat changes in phase transitions and allotropic transitions. Lattice energies of ionic substances by constructing Born–Haber cycles if the electron affinity to form the anion is known, or

  8. Miedema's model - Wikipedia

    en.wikipedia.org/wiki/Miedema's_model

    There is the qualitative rule that states that the greater the difference in the electronegativity of two metals, the greater the heat of formation - and hence the stability. Then there is the Hume-Rothery rule , which states that two metals that differ by more than 15% in their atomic radius will not form substitutional solid solutions.

  9. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript means "reaction" and the superscript means "standard".