Search results
Results from the WOW.Com Content Network
Turgor pressure within cells is regulated by osmosis and this also causes the cell wall to expand during growth. Along with size, rigidity of the cell is also caused by turgor pressure; a lower pressure results in a wilted cell or plant structure (i.e. leaf, stalk). One mechanism in plants that regulate turgor pressure is the cell's ...
According to the hypothesis, the high concentration of organic substances, particularly sugar, inside the phloem at a source such as a leaf creates a diffusion gradient (osmotic gradient) that draws water into the cells from the adjacent xylem. This creates turgor pressure, also called hydrostatic pressure, in the phloem. The hypothesis states ...
Read and Stokes (2006) consider two basic models, the "hydrostatic" and "I-beam leaf" form (see Fig 1). [48] Hydrostatic leaves such as in Prostanthera lasianthos are large and thin, and may involve the need for multiple leaves rather single large leaves because of the amount of veins needed to support the periphery of large leaves. But large ...
p is the hydrostatic pressure (Pa), ρ is the fluid density (kg/m 3), g is gravitational acceleration (m/s 2), z is the height (parallel to the direction of gravity) of the test area (m), 0 is the height of the zero reference point of the pressure (m) p_0 is the hydrostatic pressure field (Pa) along x and y at the zero reference point
Simplified Pressure-Volume Curve. A more advance method that uses the pressure bomb in plant physiology is pressure-volume curves analysis or p-v curve. Through this method one measures the changes in leaf or stem water potential and relative water content to isolate the underlying components of total leaf or stem water potential. [7]
The hydrostatic equilibrium pertains to hydrostatics and the principles of equilibrium of fluids. A hydrostatic balance is a particular balance for weighing substances in water. Hydrostatic balance allows the discovery of their specific gravities. This equilibrium is strictly applicable when an ideal fluid is in steady horizontal laminar flow ...
The phototropins trigger many responses such as phototropism, chloroplast movement and leaf expansion as well as stomatal opening. [5] Not much was known about how these photoreceptors worked prior to around 1998. The mechanism by which phototropins work was elucidated through experiments with broad bean (Vicia faba).
If a film of water forms on a plant leaf, it becomes far more susceptible to rot. On the other hand, as the VPD increases, the plant needs to draw more water from its roots. In the case of cuttings, the plant may dry out and die. For this reason the ideal range for VPD in a greenhouse is from 0.45 kPa to 1.25 kPa, ideally sitting at around 0.85 ...