enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). [3] This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the ...

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  4. Degrees of freedom (physics and chemistry) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(physics...

    By the equipartition theorem, internal energy per mole of gas equals c v T, where T is absolute temperature and the specific heat at constant volume is c v = (f)(R/2). R = 8.314 J/(K mol) is the universal gas constant, and "f" is the number of thermodynamic (quadratic) degrees of freedom, counting the number of ways in which energy can occur.

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  6. Theoretical gravity - Wikipedia

    en.wikipedia.org/wiki/Theoretical_gravity

    The type of gravity model used for the Earth depends upon the degree of fidelity required for a given problem. For many problems such as aircraft simulation, it may be sufficient to consider gravity to be a constant, defined as: [2] = = 9.80665 m/s 2 (32.1740 ft/s 2)

  7. Degrees of freedom (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Degrees_of_freedom_(mechanics)

    The position of an n-dimensional rigid body is defined by the rigid transformation, [T] = [A, d], where d is an n-dimensional translation and A is an n × n rotation matrix, which has n translational degrees of freedom and n(n − 1)/2 rotational degrees of freedom.

  8. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    A degree of freedom corresponds to one quantity that changes the configuration of the system, for example the angle of a pendulum, or the arc length traversed by a bead along a wire. If it is possible to find from the constraints as many independent variables as there are degrees of freedom, these can be used as generalized coordinates. [ 5 ]

  9. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).