Search results
Results from the WOW.Com Content Network
The atmosphere of planet Earth: The tropopause is between the troposphere and the stratosphere. Rising from the planetary surface of the Earth, the tropopause is the atmospheric level where the air ceases to become cool with increased altitude and becomes dry, devoid of water vapor.
Tropopause: 11,000 11,019 0.0 −56.5 (216.65) 22632 0.3639 2 Stratosphere: ... while geometric altitude is the standard direct vertical distance above mean sea level ...
The tropopause is the atmospheric boundary layer between the troposphere and the stratosphere, and is located by measuring the changes in temperature relative to increased altitude in the troposphere and in the stratosphere. In the troposphere, the temperature of the air decreases at high altitude, however, in the stratosphere the air ...
The main jet streams are located near the altitude of the tropopause and are westerly winds, flowing west to east around the globe. The northern hemisphere and the southern hemisphere each have a polar jet around their respective polar vortex at around 30,000 ft (5.7 mi; 9.1 km) above sea level and typically travelling at around 110 mph (180 km ...
Following the tropopause is the stratosphere. This layer extends from the tropopause to the stratopause, which is located at an altitude of about 50 km (31 mi). Temperatures remain constant with height from the tropopause to an altitude of 20 km (12 mi), after which they start to increase with height.
At the 60th parallel, the air rises to the tropopause (about 8 km at this latitude) and moves poleward. As it does so, the upper-level air mass deviates toward the east. When the air reaches the polar areas, it has cooled by radiation to space and is considerably denser than the underlying air. It descends, creating a cold, dry high-pressure area.
The tropopause is a layer which separates two very different types of air. Beneath it, the air gets colder and the wind gets faster with height. Above it, the air warms and wind velocity decreases with height. These changes in temperature and velocity can produce fluctuation in the altitude of the tropopause, called gravity waves.
Higher than the troposphere, at the tropopause, the temperature is approximately constant with altitude (up to ~20 km) and is 220 K. This means that at this layer L = 0 and T = 220 K, so that the exponential drop is faster, with H TP = 6.3 km for air (6.5 for nitrogen, 5.7 for oxygen and 4.2 for carbon dioxide).