enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...

  3. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    U is the heat transfer coefficient (watts per kelvin per square meter), A is the exchange area. Note that estimating the heat transfer coefficient may be quite complicated. This holds both for cocurrent flow, where the streams enter from the same end, and for countercurrent flow, where they enter from different ends.

  4. Heat exchanger - Wikipedia

    en.wikipedia.org/wiki/Heat_exchanger

    (a) Parallel flow, where both hot and cold liquids enter the heat exchanger from the same side, flow in the same direction and exit at the same end. This configuration is preferable when the two fluids are intended to reach exactly the same temperature, as it reduces thermal stress and produces a more uniform rate of heat transfer.

  5. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .

  6. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    The Nusselt number is the ratio of total heat transfer (convection + conduction) to conductive heat transfer across a boundary. The convection and conduction heat flows are parallel to each other and to the surface normal of the boundary surface, and are all perpendicular to the mean fluid flow in the simple case.

  7. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient is the reciprocal of thermal insulance. This is used for building materials and for clothing insulation. There are numerous methods for calculating the heat transfer coefficient in different heat transfer modes, different fluids, flow regimes, and under different thermohydraulic conditions.

  8. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    One common example of a heat exchanger is a car's radiator, in which the hot coolant fluid is cooled by the flow of air over the radiator's surface. [34] [35] Common types of heat exchanger flows include parallel flow, counter flow, and cross flow.

  9. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’. [1]