enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    In mathematics, integer factorization is the decomposition of a positive integer into a product of integers. Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is a composite number, or it is not, in which case it is a prime number.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The integers and the polynomials over a field share the property of unique factorization, that is, every nonzero element may be factored into a product of an invertible element (a unit, ±1 in the case of integers) and a product of irreducible elements (prime numbers, in the case of integers), and this factorization is unique up to rearranging ...

  4. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    As the positive integers less than s have been supposed to have a unique prime factorization, must occur in the factorization of either or Q. The latter case is impossible, as Q , being smaller than s , must have a unique prime factorization, and p 1 {\displaystyle p_{1}} differs from every q j . {\displaystyle q_{j}.}

  5. Special number field sieve - Wikipedia

    en.wikipedia.org/wiki/Special_number_field_sieve

    The factor base in Z, as in the rational sieve case, consists of all prime integers up to some other bound. We then search for relatively prime pairs of integers (a,b) such that: a+bm is smooth with respect to the factor base in Z (i.e., it is a product of elements in the factor base).

  6. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime. The factorizations take the form of an optional unit multiplied by integer powers of Gaussian primes. Note that there are rational primes which are not Gaussian primes.

  7. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    In number theory, the general number field sieve (GNFS) is the most efficient classical algorithm known for factoring integers larger than 10 100. Heuristically, its complexity for factoring an integer n (consisting of ⌊log 2 n ⌋ + 1 bits) is of the form

  8. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    All principal ideal domains, hence all Euclidean domains, are UFDs. In particular, the integers (also see Fundamental theorem of arithmetic), the Gaussian integers and the Eisenstein integers are UFDs. If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By ...

  9. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively.