Search results
Results from the WOW.Com Content Network
Mathematical statistics is the application of probability theory and other mathematical concepts to statistics, as opposed to techniques for collecting statistical data. [1] Specific mathematical techniques that are commonly used in statistics include mathematical analysis , linear algebra , stochastic analysis , differential equations , and ...
The answer to the first question is 2 / 3 , as is shown correctly by the "simple" solutions. But the answer to the second question is now different: the conditional probability the car is behind door 1 or door 2 given the host has opened door 3 (the door on the right) is 1 / 2 .
Mathematical statistics is the application of mathematics to statistics. Mathematical techniques used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure-theoretic probability theory.
There are many longstanding unsolved problems in mathematics for which a solution has still not yet been found. The notable unsolved problems in statistics are generally of a different flavor; according to John Tukey, [1] "difficulties in identifying problems have delayed statistics far more than difficulties in solving problems."
The zeta distribution has uses in applied statistics and statistical mechanics, and perhaps may be of interest to number theorists. It is the Zipf distribution for an infinite number of elements. The Hardy distribution , which describes the probabilities of the hole scores for a given golf player.
Statistics educators have cognitive and noncognitive goals for students. For example, former American Statistical Association (ASA) President Katherine Wallman defined statistical literacy as including the cognitive abilities of understanding and critically evaluating statistical results as well as appreciating the contributions statistical thinking can make.
Probability and statistics are two closely related fields in mathematics that are sometimes combined for academic purposes. [1] They are covered in multiple articles and lists: Probability; Statistics; Glossary of probability and statistics; Notation in probability and statistics; Timeline of probability and statistics
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...