Search results
Results from the WOW.Com Content Network
For example, Jupiter has a synodic period of 398.8 days from Earth; thus, Jupiter's opposition occurs once roughly every 13 months. If the orbital periods of the two bodies around the third are called T 1 and T 2, so that T 1 < T 2, their synodic period is given by: [7]
In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune.The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.
There do exist orbits within these empty regions where objects can survive for the age of the Solar System. These resonances occur when Neptune's orbital period is a precise fraction of that of the object, such as 1:2, or 3:4. If, say, an object orbits the Sun once for every two Neptune orbits, it will only complete half an orbit by the time ...
The orbits are ellipses, with foci F 1 and F 2 for Planet 1, and F 1 and F 3 for Planet 2. The Sun is at F 1. The shaded areas A 1 and A 2 are equal, and are swept out in equal times by Planet 1's orbit. The ratio of Planet 1's orbit time to Planet 2's is (/) /.
[2] 2001 KY 76 is a trans-Neptunian object and belongs to the plutinos, a large group of objects named after their largest member, Pluto . These objects are in a 2:3 mean-motion orbital resonance with the planet Neptune meaning, for two orbits a plutino makes, Neptune orbits three times, and are therefore protected from Neptune's scattering effect.
All but the outer two are within Neptune-synchronous orbit (Neptune's rotational period is 0.6713 day or 16 hours [20]) and thus are being tidally decelerated. Naiad, the closest regular moon, is also the second smallest among the inner moons (following the discovery of Hippocamp), whereas Proteus is the largest regular moon and the second ...
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).
(612533) 2002 XV93 at AstDyS-2, Asteroids—Dynamic Site. Ephemeris · Observation prediction · Orbital info · Proper elements · Observational info (612533) 2002 XV93 at ESA–space situational awareness. Ephemerides · Observations · Orbit · Physical properties · Summary (612533) 2002 XV93 at the JPL Small-Body Database