Search results
Results from the WOW.Com Content Network
The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2]
If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative. On the other hand, r 1 – r 2 and r 1 – r 3 are complex conjugates, and their product is real and positive. [ 23 ]
The definition of a curve includes figures that can hardly be called curves in common usage. For example, the image of a curve can cover a square in the plane (space-filling curve), and a simple curve may have a positive area. [10] Fractal curves can have properties that are strange for the common sense. For example, a fractal curve can have a ...
Elliptic curves can be defined over any field K; the formal definition of an elliptic curve is a non-singular projective algebraic curve over K with genus 1 and endowed with a distinguished point defined over K. If the characteristic of K is neither 2 nor 3, then every elliptic curve over K can be written in the form
For example, let a denote a multiplicative generator of the group of units of F 4, the Galois field of order four (thus a and a + 1 are roots of x 2 + x + 1 over F 4. Because (a + 1) 2 = a, a + 1 is the unique solution of the quadratic equation x 2 + a = 0.
Contract curve; Cost curve; Demand curve. Aggregate demand curve; Compensated demand curve; Duck curve; Engel curve; Hubbert curve; Indifference curve; J curve; Kuznets curve; Laffer curve; Lorenz curve; Phillips curve; Supply curve. Aggregate supply curve; Backward bending supply curve of labor
The central curve, the cardioid, has a cusp at the origin. The right curve has a crunode at the origin and the curve crosses itself to form a loop. If b 0 and b 1 are both 0 in the above expansion, but at least one of c 0, c 1, c 2 is not 0 then the origin is called a double point of the curve.
there are n intervals given by a 1 < b 1 ≤ a 2 < b 2 ≤ ⋯ ≤ a n < b n in [a, b] such that f (a k) = f (b k) for every k from 1 to n. Then there is a number c in (a, b) such that the n th derivative of f at c is zero. The red curve is the graph of function with 3 roots in the interval [−3, 2]. Thus its second derivative (graphed in ...