Search results
Results from the WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle ) is equal to the sum of the areas of the squares on the other two sides.
In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.
Kodaira vanishing theorem (complex manifold) Koebe 1/4 theorem (complex analysis) Kolmogorov extension theorem (stochastic processes) Kolmogorov's three-series theorem (mathematical series) Kolmogorov–Arnold representation theorem (real analysis, approximation theory) Kolmogorov–Arnold–Moser theorem (dynamical systems) Kőnig's theorem ...
1,33,45 comes up. The equalside of 1,33,45 take: 1,15 comes up. 1,15 your diagonal. Your length; to the width raise, 45 your surface. Thus the procedure. [21] The problem statement is given in lines 1–3, stage 1 of the solution in lines 3–9, stage 2 of the solution in lines 9–16, and verification of the solution in lines 16–24.
The Pythagorean theorem is proved. [15] Books V and VII–X deal with number theory, with numbers treated geometrically via their representation as line segments with various lengths. Notions such as prime numbers and rational and irrational numbers are introduced. The infinitude of prime numbers is proved. Books XI–XIII concern solid geometry.
Since the diagonal of a rectangle is the hypotenuse of the right triangle formed by two adjacent sides, the statement is seen to be equivalent to the Pythagorean theorem. [8] Baudhāyana also provides a statement using a rope measure of the reduced form of the Pythagorean theorem for an isosceles right triangle:
The Pythagorean theorem was known and used by the Babylonians and Indians centuries before Pythagoras, [216] [214] [217] [218] but he may have been the first to introduce it to the Greeks. [ 219 ] [ 217 ] Some historians of mathematics have even suggested that he—or his students—may have constructed the first proof . [ 220 ]