Search results
Results from the WOW.Com Content Network
The acronym's procedural application does not match experts' intuitive understanding of mathematical notation: mathematical notation indicates groupings in ways other than parentheses or brackets and a mathematical expression is a tree-like hierarchy rather than a linearly "ordered" structure; furthermore, there is no single order by which ...
In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs.It is also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions-or formulae-as-types interpretation.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory , proof theory , set theory , and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables.
The set C = {0, 1} ∞ of all infinite binary sequences is sometimes called the Cantor space. An infinite binary sequence can represent a formal language (a set of strings) by setting the n th bit of the sequence to 1 if and only if the n th string (in shortlex order) is in the language.
In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi systems, LK and LJ, were introduced in 1934/1935 by Gerhard Gentzen [1] as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively).
The situation calculus is a logic formalism designed for representing and reasoning about dynamical domains. It was first introduced by John McCarthy in 1963. [1] The main version of the situational calculus that is presented in this article is based on that introduced by Ray Reiter in 1991.