Search results
Results from the WOW.Com Content Network
Huber's equation, first derived by a Polish engineer Tytus Maksymilian Huber, is a basic formula in elastic material tension calculations, an equivalent of the equation of state, but applying to solids. In most simple expression and commonly in use it looks like this: [1]
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane ...
A formula editor is a computer program that is used to typeset mathematical formulas and mathematical expressions. Formula editors typically serve two purposes: They allow word processing and publication of technical content either for print publication, or to generate raster images for web pages or screen presentations.
Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.
In this method, the basic shape function is modified to obtain the upwinding effect. This method is an extension of Runge–Kutta discontinuous for a convection-diffusion equation. For time-dependent equations, a different kind of approach is followed. The finite difference scheme has an equivalent in the finite element method (Galerkin method ...
S is the current density (flux) outward through the membrane carried by ion S, measured in amperes per square meter (A·m −2) P S is the permeability of the membrane for ion S measured in m·s −1; z S is the valence of ion S; V m is the transmembrane potential in volts