Search results
Results from the WOW.Com Content Network
Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.
A Boltzmann machine, like a Sherrington–Kirkpatrick model, is a network of units with a total "energy" (Hamiltonian) defined for the overall network. Its units produce binary results. Boltzmann machine weights are stochastic. The global energy in a Boltzmann machine is identical in form to that of Hopfield networks and Ising models:
The deep belief network model by Hinton et al. (2006) involves learning the distribution of a high-level representation using successive layers of binary or real-valued latent variables. It uses a restricted Boltzmann machine to model each new layer of higher level features.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The Boltzmann machine can be thought of as a noisy Hopfield network. It is one of the first neural networks to demonstrate learning of latent variables (hidden units). Boltzmann machine learning was at first slow to simulate, but the contrastive divergence algorithm speeds up training for Boltzmann machines and Products of Experts.
Alternatively, it is a hierarchical generative model for deep learning, which is highly effective in image processing and object recognition, though it has been used in other domains too. [2] The salient features of the model include the fact that it scales well to high-dimensional images and is translation-invariant.
Stochastic - Boltzmann Machine, Cauchy Machine; It is to be noted that though these learning rules might appear to be based on similar ideas, they do have subtle differences, as they are a generalisation or application over the previous rule, and hence it makes sense to study them separately based on their origins and intents.
Motor adaptation, a form of motor learning, is the process of acquiring and restoring locomotor patterns (e.g. leg coordination patterns) through an error-driven learning process. This type of adaptation is context-dependent and hence, is specific to the environment in which the adaptation occurred.