Search results
Results from the WOW.Com Content Network
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
A polynomial decomposition may enable more efficient evaluation of a polynomial. For example, + + + + + + + = () (+ +) can be calculated with 3 multiplications and 3 additions using the decomposition, while Horner's method would require 7 multiplications and 8 additions.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
This means that the common factor variable can be factored out, resulting in ( a + b ) x {\displaystyle (a+b)x} If the expression in parentheses may be calculated, that is, if the variables in the expression in the parentheses are known numbers, then it is simpler to write the calculation a + b {\displaystyle a+b} . and juxtapose that new ...
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).
For example, the content of + may be either 2 or −2, since 2 is the greatest common divisor of −12, 30, and −20. If one chooses 2 as the content, the primitive part of this polynomial is If one chooses 2 as the content, the primitive part of this polynomial is
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.).