enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

  3. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Enzyme denaturation is normally linked to temperatures above a species' normal level; as a result, enzymes from bacteria living in volcanic environments such as hot springs are prized by industrial users for their ability to function at high temperatures, allowing enzyme-catalysed reactions to be operated at a very high rate.

  4. Biocatalysis - Wikipedia

    en.wikipedia.org/wiki/Biocatalysis

    Regioselectivity and diastereoselectivity: Due to their complex three-dimensional structure, enzymes may distinguish between functional groups which are chemically situated in different regions of the substrate molecule. Enantioselectivity: Since almost all enzymes are made from L-amino acids, enzymes are chiral catalysts. As a consequence, any ...

  5. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black. (In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction.

  6. Ribozyme - Wikipedia

    en.wikipedia.org/wiki/Ribozyme

    Like many protein enzymes, metal binding is also critical to the function of many ribozymes. [9] Often these interactions use both the phosphate backbone and the base of the nucleotide, causing drastic conformational changes. [10] There are two mechanism classes for the cleavage of a phosphodiester backbone in the presence of metal.

  7. Hydrolase - Wikipedia

    en.wikipedia.org/wiki/Hydrolase

    Hydrolase enzymes are important for the body because they have degradative properties. In lipids, lipases contribute to the breakdown of fats and lipoproteins and other larger molecules into smaller molecules like fatty acids and glycerol. Fatty acids and other small molecules are used for synthesis and as a source of energy. [1]

  8. Hydrogenase - Wikipedia

    en.wikipedia.org/wiki/Hydrogenase

    The structures of the active sites of the three types of hydrogenase enzymes. Hydrogenases catalyze, sometimes reversibly, H 2 uptake. The [FeFe] and [NiFe] hydrogenases are true redox catalysts, driving H 2 oxidation and proton (H +) reduction (equation 3), the [Fe] hydrogenases catalyze the reversible heterolytic cleavage of H 2 shown by ...

  9. Catalysis - Wikipedia

    en.wikipedia.org/wiki/Catalysis

    The catalyst may increase the reaction rate or selectivity, or enable the reaction at lower temperatures. This effect can be illustrated with an energy profile diagram. In the catalyzed elementary reaction, catalysts do not change the extent of a reaction: they have no effect on the chemical equilibrium of a reaction.