enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    Instead, the common practice is to measure the specific heat capacity at constant pressure (allowing the material to expand or contract as it wishes), determine separately the coefficient of thermal expansion and the compressibility of the material, and compute the specific heat capacity at constant volume from these data according to the laws ...

  3. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The molar heat capacity is the heat capacity per unit amount (SI unit: mole) of a pure substance, and the specific heat capacity, often called simply specific heat, is the heat capacity per unit mass of a material. Heat capacity is a physical property of a substance, which means that it depends on the state and properties of the substance under ...

  4. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    The heat capacity can usually be measured by the method implied by its definition: start with the object at a known uniform temperature, add a known amount of heat energy to it, wait for its temperature to become uniform, and measure the change in its temperature.

  5. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Here, U is internal energy, T is absolute temperature, S is entropy, P is pressure, and V is volume. This is only one expression of the fundamental thermodynamic relation. It may be expressed in other ways, using different variables (e.g. using thermodynamic potentials ).

  6. Thermal pressure - Wikipedia

    en.wikipedia.org/wiki/Thermal_Pressure

    In thermodynamics, thermal pressure (also known as the thermal pressure coefficient) is a measure of the relative pressure change of a fluid or a solid as a response to a temperature change at constant volume. The concept is related to the Pressure-Temperature Law, also known as Amontons's law or Gay-Lussac's law. [1]

  7. Conjugate variables (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Conjugate_variables...

    Here, pressure is the driving force, volume is the associated displacement, and the two form a pair of conjugate variables. In a similar way, temperature differences drive changes in entropy, and their product is the energy transferred by heat transfer.

  8. Temperature measurement - Wikipedia

    en.wikipedia.org/wiki/Temperature_measurement

    Triple points are conditions of pressure, volume and temperature such that three phases are simultaneously present, for example solid, vapor and liquid. For a single component there are no degrees of freedom at a triple point and any change in the three variables results in one or more of the phases vanishing from the cell.

  9. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    One of the relations it resolved to is the enthalpy of vaporization at a provided temperature by measuring the slope of a saturation curve on a pressure vs. temperature graph. It also allows us to determine the specific volume of a saturated vapor and liquid at that provided temperature.